Orthogonal Polynomials and Quadratic Extremal Problems

نویسنده

  • J. M. MCDOUGALL
چکیده

The purpose of this paper is to analyse a class of quadratic extremal problems defined on various Hilbert spaces of analytic functions, thereby generalizing an extremal problem on the Dirichlet space which was solved by S.D. Fisher. Each extremal problem considered here is shown to be connected with a system of orthogonal polynomials. The orthogonal polynomials then determine properties of the extremal function, and provide information about the existence of extremals.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extremal problems, inequalities, and classical orthogonal polynomials

In this survey paper we give a short account on characterizations for very classical orthogonal polynomials via extremal problems and the corresponding inequalities. Beside the basic properties of the classical orthogonal polynomials we consider polynomial inequalities of Landau and Kolmogoroff type, some weighted polynomial inequalities in L2-norm of Markov-Bernstein type, as well as the corre...

متن کامل

Applications of the monotonicity of extremal zeros of orthogonal polynomials in interlacing and optimization problems

We investigate monotonicity properties of extremal zeros of orthogonal polynomials depending on a parameter. Using a functional analysis method we prove the monotonicity of extreme zeros of associated Jacobi, associated Gegenbauer and q-Meixner-Pollaczek polynomials. We show how these results can be applied to prove interlacing of zeros of orthogonal polynomials with shifted parameters and to d...

متن کامل

Orthogonal Polynomials on the Unit Circle Associated with the Laguerre Polynomials

Using the well-known fact that the Fourier transform is unitary, we obtain a class of orthogonal polynomials on the unit circle from the Fourier transform of the Laguerre polynomials (with suitable weights attached). Some related extremal problems which arise naturally in this setting are investigated.

متن کامل

Coefficients of Multiplication Formulas for Classical Orthogonal Polynomials

In this paper, using both an analytic and algorithmic approach, we derive the coefficients Dm(n, a) of the multiplication formula pn(ax) = n ∑ m=0 Dm(n, a)pm(x) or the translation formula pn(x +a) = n ∑ m=0 Dm(n, a)pm(x), where {pn}n≥0 is an orthogonal polynomial set, including the classical continuous orthogonal polynomials, the classical discrete orthogonal polynomials, the q-classical orthog...

متن کامل

Orthogonal polynomials, reproducing kernels, and zeros of optimal approximants

We study connections between orthogonal polynomials, reproducing kernel functions, and polynomials p minimizing Dirichlet-type norms ‖pf − 1‖α for a given function f . For α ∈ [0, 1] (which includes the Hardy and Dirichlet spaces of the disk) and general f , we show that such extremal polynomials are non-vanishing in the closed unit disk. For negative α, the weighted Bergman space case, the ext...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002